Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 600
Filtrar
1.
Nutrients ; 16(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612999

RESUMO

Atractylodes macrocephala Koidz (AMK) is a traditional herbal medicine used for thousands of years in East Asia to improve a variety of illnesses and conditions, including cancers. This study explored the effect of AMK extract on apoptosis and tumor-grafted mice using AGS human gastric adenocarcinoma cells. We investigated the compounds, target genes, and associated diseases of AMK using the Traditional Chinese Medical Systems Pharmacy (TCMSP) database platform. Cell viability assay, cell cycle and mitochondrial depolarization analysis, caspase activity assay, reactive oxygen species (ROS) assay, and wound healing and spheroid formation assay were used to investigate the anti-cancer effects of AMK extract on AGS cells. Also, in vivo studies were conducted using subcutaneous xenografts. AMK extract reduced the viability of AGS cells and increased the sub-G1 cell fraction and the mitochondrial membrane potential. Also, AMK extract increased the production of ROS. AMK extract induced the increased caspase activities and modulated the mitogen-activated protein kinases (MAPK). In addition, AMK extract effectively inhibited AGS cell migration and led to a notable reduction in the growth of AGS spheroids. Moreover, AMK extract hindered the growth of AGS xenograft tumors in NSG mice. Our results suggest that AMK has anti-cancer effects by promoting cell cycle arrest and inhibiting the proliferation of AGS cancer cells and a xenograft model through apoptosis. This study could provide a novel approach to treat gastric cancer.


Assuntos
Atractylodes , Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/tratamento farmacológico , Espécies Reativas de Oxigênio , Caspases , Extratos Vegetais/farmacologia
2.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543015

RESUMO

The rhizomes of the genus Atractylodes DC. consist of various bioactive components, including sesquiterpenes, which have attracted a great deal of research interest in recent years. In the present study, we reviewed the previously published literatures prior to November 2023 on the chemical structures, biosynthetic pathways, and pharmacological activities of the sesquiterpenoids from this genus via online databases such as Web of Science, Google Scholar, and ScienceDirect. Phytochemical studies have led to the identification of more than 160 sesquiterpenes, notably eudesmane-type sesquiterpenes. Many pharmacological activities have been demonstrated, particularly anticancer, anti-inflammatory, and antibacterial and antiviral activities. This review presents updated, comprehensive and categorized information on the phytochemistry and pharmacology of sesquiterpenes in Atractylodes DC., with the aim of offering guidance for the future exploitation and utilization of active ingredients in this genus.


Assuntos
Atractylodes , Sesquiterpenos de Eudesmano , Sesquiterpenos , Atractylodes/química , Rizoma/química , Sesquiterpenos/química , Sesquiterpenos de Eudesmano/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Etnofarmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Fitoterapia
3.
J Agric Food Chem ; 72(14): 7707-7715, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530236

RESUMO

In this study, near-infrared (NIR) spectroscopy and high-performance liquid chromatography (HPLC) combined with chemometrics tools were applied for quick discrimination and quantitative analysis of different varieties and origins of Atractylodis rhizoma samples. Based on NIR data, orthogonal partial least squares discriminant analysis (OPLS-DA) and K-nearest neighbor (KNN) models achieved greater than 90% discriminant accuracy of the three species and two origins of Atractylodis rhizoma. Moreover, the contents of three active ingredients (atractyloxin, atractylone, and ß-eudesmol) in Atractylodis rhizoma were simultaneously determined by HPLC. There are significant differences in the content of the three components in the samples of Atractylodis rhizoma from different varieties and origins. Then, partial least squares regression (PLSR) models for the prediction of atractyloxin, atractylone, and ß-eudesmol content were successfully established. The complete Atractylodis rhizoma spectra gave rise to good predictions of atractyloxin, atractylone, and ß-eudesmol content with R2 values of 0.9642, 0.9588, and 0.9812, respectively. Based on the results of this present research, it can be concluded that NIR is a great nondestructive alternative to be applied as a rapid classification system by the drug industry.


Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Sesquiterpenos de Eudesmano , Atractylodes/química , Medicamentos de Ervas Chinesas/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Quimiometria , Análise dos Mínimos Quadrados
4.
Vet Med Sci ; 10(3): e1412, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38504633

RESUMO

BACKGROUND: Lipopolysaccharide (LPS) can induce systemic inflammation and affect the growth and development of poultry. As a kind of traditional Chinese medicine, polysaccharide of Atractylodes macrocephala Koidz (PAMK) can effectively improve the growth performance of animals and improve the immunity of animal bodies. OBJECTIVES: The purpose of this study was to investigate the effects of PAMK on LPS-induced inflammatory response, proliferation, differentiation and apoptosis of chicken embryonic myogenic cells. METHODS: We used chicken embryonic myogenic cells as a model by detecting EdU/MYHC immunofluorescence, the expression of inflammation, proliferation, differentiation-related genes and proteins and the number of apoptotic cells in the condition of adding LPS, PAMK, belnacasan (an inhibitor of Caspase1) or their combinations. RESULTS: The results showed that LPS stimulation increased the expression of inflammatory factors, inhibited proliferation and differentiation, and excessive apoptosis in chicken embryonic myogenic cells, and PAMK alleviated these adverse effects induced by LPS. After the addition of belnacasan (inhibitor of Caspase1), apoptosis in myogenic cells was inhibited, and therefore, the number of apoptotic cells and the expression of pro-apoptotic genes Caspase1 and Caspase3 were increased. In addition, belnacasan inhibited the increased expression of inflammatory factors, inhibited proliferation, differentiation and excessive apoptosis in chicken embryonic myogenic cells induced by LPS. CONCLUSIONS: This study provides a theoretical basis for further exploring the mechanism of action of PAMK and exogenous LPS on chicken embryonic myogenic cells and lays the foundation for the development and application of green feed additives in animal husbandry industry.


Assuntos
Atractylodes , Lipopolissacarídeos , Animais , Lipopolissacarídeos/toxicidade , Galinhas , Polissacarídeos/farmacologia , Apoptose , Proliferação de Células , Inflamação/veterinária
5.
BMC Plant Biol ; 24(1): 91, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317086

RESUMO

BACKGROUND: Atractylodes chinensis (DC) Koidz., a dicotyledonous and hypogeal germination species, is an important medicinal plant because its rhizome is enriched in sesquiterpenes. The development and production of A. chinensis are negatively affected by drought stress, especially at the seedling stage. Understanding the molecular mechanism of A. chinensis drought stress response plays an important role in ensuring medicinal plant production and quality. In this study, A. chinensis seedlings were subjected to drought stress treatment for 0 (control), 3 (D3), and 9 days (D9). For the control, the sample was watered every two days and collected on the second morning after watering. The integration of physiological and transcriptomic analyses was carried out to investigate the effects of drought stress on A. chinensis seedlings and to reveal the molecular mechanism of its drought stress response. RESULTS: The malondialdehyde, proline, soluble sugar, and crude protein contents and antioxidative enzyme (superoxide dismutase, peroxidase, and catalase) activity were significantly increased under drought stress compared with the control. Transcriptomic analysis indicated a total of 215,665 unigenes with an average length of 759.09 bp and an N50 of 1140 bp. A total of 29,449 differentially expressed genes (DEGs) were detected between the control and D3, and 14,538 DEGs were detected between the control and D9. Under drought stress, terpenoid backbone biosynthesis had the highest number of unigenes in the metabolism of terpenoids and polyketides. To identify candidate genes involved in the sesquiterpenoid and triterpenoid biosynthetic pathways, we observed 22 unigene-encoding enzymes in the terpenoid backbone biosynthetic pathway and 15 unigene-encoding enzymes in the sesquiterpenoid and triterpenoid biosynthetic pathways under drought stress. CONCLUSION: Our study provides transcriptome profiles and candidate genes involved in sesquiterpenoid and triterpenoid biosynthesis in A. chinensis in response to drought stress. Our results improve our understanding of how drought stress might affect sesquiterpenoid and triterpenoid biosynthetic pathways in A. chinensis.


Assuntos
Atractylodes , Sesquiterpenos , Triterpenos , Transcriptoma , Atractylodes/genética , Secas , Perfilação da Expressão Gênica , Terpenos , Água , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
6.
J Ethnopharmacol ; 326: 117971, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38403003

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Baizhu (BZ) is the dried rhizome of Atractylodes macrocephala Koidz (Compositae), which invigorates the spleen, improves vital energy, stabilizes the fetus, and is widely used for treating spleen deficiency syndrome. However, the impact of BZ on gastrointestinal function during pregnancy remains unexplored. AIM OF THE STUDY: This study elucidated the ameliorative effects of BZ on gastrointestinal health and pregnancy outcomes in pregnant mice with spleen deficiency diarrhea (SDD). METHODS: To simulate an irregular human diet and overconsumption of cold and bitter foods leading to SDD, a model of pregnant mice with SDD was established using an alternate-day fasting and high-fat diet combined with oral administration of Sennae Folium. During the experiment, general indicators and diarrhea-related parameters were measured. Gastric and intestinal motility (small intestinal propulsion and gastric emptying rates) were evaluated. Serum motilin (MTL), ghrelin, growth hormone (GH), gastrin (Gas), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), chorionic gonadotropin ß (ß-CG), progesterone (P), and estradiol (E2) were quantified using an enzyme-linked immunosorbent assay. Pathological changes were examined by hematoxylin and eosin staining (H&E) and alcian blue periodic acid Schiff staining (AB-PAS). Immunohistochemistry and immunofluorescence were used to measure the expression levels of the intestinal barrier and water metabolism-related proteins in colonic tissues. The pregnancy rate, ovarian organ coefficient, uterus with fetus organ coefficient, small size, average fetal weight, and body length of fetal mice were calculated. RESULTS: The results showed that BZ significantly improved general indicators and diarrhea in pregnant mice with SDD, increased gastric emptying rate and small intestinal propulsion rate, elevated the levels of gastrointestinal hormones (AMS, ghrelin, GH, and Gas) in the serum, and reduced lipid levels (TC and LDL-c). It also improved colonic tissue morphology, increased the number of goblet cells, and promoted the mRNA and protein expression of occludin, claudin-1, ZO-1, AQP3, AQP4, and AQP8 in colonic tissues, downregulating the mRNA and protein expression levels of claudin-2, thereby alleviating intestinal barrier damage and regulating the balance of water and fluid metabolism. BZ also held the levels of pregnancy hormones (ß-CG, P, and E2) in the serum of pregnant mice with SDD. Moreover, it increased the pregnancy rate, ovarian organ coefficient, uterus with fetus organ coefficient, litter size, average fetal weight, and body length of fetal mice. These findings indicate that BZ can improve spleen deficiency-related symptoms in pregnant mice before and during pregnancy, regulate pregnancy-related hormones, and improve pregnancy outcomes.


Assuntos
Atractylodes , Rizoma , Humanos , Feminino , Gravidez , Camundongos , Animais , Grelina/uso terapêutico , Resultado da Gravidez , LDL-Colesterol , Peso Fetal , Diarreia/tratamento farmacológico , Gastrinas , Água , RNA Mensageiro
7.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396809

RESUMO

H9N2 avian influenza poses a significant public health risk, necessitating effective vaccines for mass immunization. Oral inactivated vaccines offer advantages like the ease of administration, but their efficacy often requires enhancement through mucosal adjuvants. In a previous study, we established a novel complex of polysaccharide from Atractylodes macrocephala Koidz binding with zinc oxide nanoparticles (AMP-ZnONPs) and preliminarily demonstrated its immune-enhancing function. This work aimed to evaluate the efficacy of AMP-ZnONPs as adjuvants in an oral H9N2-inactivated vaccine and the vaccine's impact on intestinal mucosal immunity. In this study, mice were orally vaccinated on days 0 and 14 after adapting to the environment. AMP-ZnONPs significantly improved HI titers, the levels of specific IgG, IgG1 and IgG2a in serum and sIgA in intestinal lavage fluid; increased the number of B-1 and B-2 cells and dendritic cell populations; and enhanced the mRNA expression of intestinal homing factors and immune-related cytokines. Interestingly, AMP-ZnONPs were more likely to affect B-1 cells than B-2 cells. AMP-ZnONPs showed mucosal immune enhancement that was comparable to positive control (cholera toxin, CT), but not to the side effect of weight loss caused by CT. Compared to the whole-inactivated H9N2 virus (WIV) group, the WIV + AMP-ZnONP and WIV + CT groups exhibited opposite shifts in gut microbial abundance. AMP-ZnONPs serve as an effective and safe mucosal adjuvant for oral WIV, improving cellular, humoral and mucosal immunity and microbiota in the gastrointestinal tract, avoiding the related undesired effects of CT.


Assuntos
Atractylodes , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Óxido de Zinco , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Imunidade nas Mucosas , Vacinas de Produtos Inativados , Polissacarídeos/farmacologia , Anticorpos Antivirais
8.
J Cell Mol Med ; 28(4): e18081, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38358034

RESUMO

Atractylodes macrocephala III (ATL III), with anti-inflammatory and antitumor effects, is the main compound of Atractylodes macrocephala. Whether ATL III has an effect on cervical cancer and the specific mechanism are still unclear. Here, we investigated the effects of ATL III on cervical cancer cells at different concentrations and found that ATL III downregulates insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), which was found to be highly expressed in cervical cancer tissue by RNA-Seq. In this study, we found that ATL III promotes apoptosis and regulates epithelial-mesenchymal transition (EMT) in cervical cancer cells (HeLa and SiHa cells) and that IGF2BP3 is a common target gene of ATL III in HeLa and SiHa cells. The expression level of IGF2BP3 in cervical cancer cells was proportional to their migration and invasion abilities. This was verified by transfection of cells with a small interfering RNA and an IGF2BP3 overexpression plasmid. After ATL III treatment, the migration and invasion abilities of cervical cancer cells were obviously reduced, but these effects were attenuated after overexpression of IGF2BP3. In addition, the transcription factor IGF2BP3 was predicted by the JASPAR system. After intersection with our sequencing results, we verified the promotional effect of ETV5 (ETS translocation variant 5) on IGF2BP3 and found that ALT III inhibited ETV5. In general, our research showed that ATL III inhibits the migration and invasion of cervical cancer cells by regulating IGF2BP3 through ETV5.


Assuntos
Atractylodes , Neoplasias do Colo do Útero , Feminino , Humanos , Atractylodes/química , Neoplasias do Colo do Útero/patologia , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Transição Epitelial-Mesenquimal/genética , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a DNA/genética
9.
Biomed Chromatogr ; 38(4): e5818, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38230827

RESUMO

To optimize the extraction process of crude polysaccharides from Atractylodes and elaborate the mechanism of Atractylodes polysaccharides in treating diarrhea owing to spleen deficiency, so as to lay a foundation for further development and utilization of Atractylodes lancea, we used an orthogonal test to optimize the extraction process and established a model of spleen deficiency. It was further combined with histopathology and intestinal flora to elaborate the mechanism of Atractylodes polysaccharides in the treatment of spleen-deficiency diarrhea. The optimized extraction conditions were as follows: the ratio of material to liquid was 1:25; the rotational speed was 150 rpm; the extraction temperature was 60°C; the extraction time was 2 h; and the extraction rate was about 23%. The therapeutic effect of Atractylodes polysaccharides on a spleen-deficiency diarrhea model in mice showed that the water content of stools and diarrhea grade in the treatment group were alleviated, and the levels of gastrin, motilin and d-xylose were improved. The analysis results based on gut microbiota showed that the model group had a higher diversity of gut microbiota than the normal group and treatment group, and the treatment group could correct the diversity of gut microbiota in model mice. Analysis based on the level of phylum and genus showed that the treatment group could inhibit the abundance of Helicobacter pylori genus and increase beneficial bacteria genera. The conclusion was that the optimized extraction process of Atractylodes polysaccharides was reasonable and feasible, and had a good therapeutic effect on spleen deficiency diarrhea.


Assuntos
Atractylodes , Microbioma Gastrointestinal , Camundongos , Animais , Baço , Atractylodes/química , Rizoma/química , Polissacarídeos , Diarreia/tratamento farmacológico
10.
Integr Cancer Ther ; 23: 15347354231223967, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38291969

RESUMO

BACKGROUND: A statistical model is essential in determining the appropriate predictive indicators for therapies in many types of cancers. Predictors have been compared favorably to the traditional systems for many cancers. Thus, this study has been proposed as a new standard approach. A recent study on the clinical efficacy of Atractylodes lancea (Thunb) DC. (AL) revealed the higher clinical benefits in patients with advanced-stage intrahepatic cholangiocarcinoma (ICC) treated with AL compared with standard supportive care. We investigated the relationships between clinical efficacy and pharmacokinetic parameters of serum bioactivity of AL and its active constituent atractylodin and determined therapeutic ranges. METHODS: Group 1 of advanced-stage ICC patients received daily doses of 1000 mg of standardized extract of the capsule formulation of AL (CMC-AL) for 90 days. Group 2 received daily doses of 1000 mg of CMC-AL for 14 days, followed by 1500 mg for 14 days, and 2000 mg for 62 days. Group 3 (control group) received palliative care. Cox proportional hazard model and Receiver Operating Characteristic (ROC) were applied to determine the cut-off values of AUC0-inf, Cmax, and Cavg associated with therapeutic outcomes. Number needed to treat (NNT) and relative risk (RR) were also applied to determine potential predictors. RESULTS: The AUC0-inf of total AL bioactivity of >96.71 µg hour/ml was identified as a promising predictor of disease prognosis, that is, progression-free survival (PFS) and disease control rate (DCR). Cmax of total AL bioactivity of >21.42 was identified as a predictor of the prognosis of survival. The therapeutic range of total AL bioactivity for PFS and DCR is 14.48 to 65.8 µg/ml, and for overall survival is 10.97 to 65.8 µg/ml. Conclusions: The predictors of ICC disease prognosis were established based on the pharmacokinetics of total AL bioactivity. The information could be exploited to improve the clinical efficacy of AL in patients with advanced-stage ICC. These predictors will be validated in a phase 2B clinical study. TRIAL REGISTRATION: TCTR20210129007 (TCTR: www.clinicaltrials.in.th).


Assuntos
Atractylodes , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Prognóstico , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Extratos Vegetais/uso terapêutico
11.
Bioorg Chem ; 144: 107111, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218068

RESUMO

To mine fascinating molecules from the rhizomes of Atractylodes chinensis, the known molecular formula of atrachinenin A was used as a bait to search LC-HRMS data in different subfractions. Sixteen new meroterpenoids, atrachinenins D-S (1-16) including three unprecedented carbon skeletons (1-5) and eleven new oxygen-bridged hybrids (6-16) were obtained by the targeted isolation. Their structures and absolute configurations were elucidated by the spectroscopic data and electronic circular dichroism (ECD) calculations. The isolated compounds were evaluated for their inhibitory activity of NO production and compounds 1, 4, 8, and 13 showed moderate anti-inflammatory activity. The proposed biosynthetic pathways of 1-5 were also discussed.


Assuntos
Atractylodes , Atractylodes/química , Hidroquinonas , Anti-Inflamatórios , Dicroísmo Circular , Estrutura Molecular
12.
J Ethnopharmacol ; 322: 117637, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38135226

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Constipation is one of the most prevalent gastrointestinal tract diseases that seriously affects health-related quality of human life and requires effective treatments without side effect. The rhizome of Atractylodes macrocephala Koidz. (Compositae), called Atractylodes Macrocephala Rhizome (AMR), a commonly used traditional Chinese medicine, has been used to relieve the clinical symptoms of patients with constipation. AIM OF THE STUDY: To reveal the dose-dependent laxative effect and potential mechanism of AMR on loperamide-induced slow transit constipation (STC) rats. MATERIALS AND METHODS: Loperamide-induced constipation rat model was established and the dose-dependent laxative effect of AMR was investigated. Untargeted metabolomics based on an UPLC-Q/TOF-MS technique combined with western blot analysis was used to explain the potential mechanism of AMR relieve loperamide-induced constipation in rats. RESULTS: The results showed that medium dose of AMR (AMR-M, 4.32 g raw herb/kg) and high dose of AMR (AMR-H, 8.64 g raw herb/kg) treatments significantly increased the fecal water content, Bristol score, gastrointestinal transit rate, and recovered the damaged colon tissues of constipated rats, but low dose of AMR (AMR-L, 2.16 g raw herb/kg) did not show laxative effect. Both AMR-M and AMR-H treatments also remarkably reduced the serum levels of vasoactive intestinal peptide (VIP), somatostatin (SS) and dopamine (DA), and increased the levels of motilin (MTL), gastrin (GAS) and 5-hydroxytryptamine (5-HT). Urine metabolomics revealed that constipation development was mainly ascribed to the perturbed tryptophan metabolism, and AMR-M and AMR-H markedly corrected the abnormal levels of five urine tryptophan metabolites, namely 4,6-dihydroxyquinoline, indole, 4,8-dihydroxyquinoline, 5-hydroxytryptamine, and kynurenic acid. Additionally, western blot analysis confirmed that the abnormal expression of rate-limiting enzyme involving in tryptophan metabolism, including tryptophan hydroxylase (TPH), monoamine oxidase (MAO) and indoleamine-2,3-dioxygenase (IDO) in the colon of constipated rats, were mediated by AMR-M and AMR-H. CONCLUSIONS: The findings provide insight into the mechanisms of STC and AMR could be developed as new therapeutic agent for prevention or healing of constipation.


Assuntos
Atractylodes , Loperamida , Ratos , Humanos , Animais , Loperamida/uso terapêutico , Laxantes/farmacologia , Atractylodes/química , Triptofano , Rizoma/química , Serotonina , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico
13.
J Sci Food Agric ; 104(6): 3624-3636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38148571

RESUMO

BACKGROUND: Porcine infection with Porcine circovirus type 2 (PCV2) causes immunosuppression, which is easy to cause concurrent or secondary infection, making the disease complicated and difficult to treat, and causing huge economic losses to the pig industry. Total polysaccharide from the rhizoma of Atractylodes macrocephala Koidz. (PAMK) is outstanding in enhancing non-specific immunity and cellular immunity, and effectively improving the body's disease resistance, indicating its potential role in antiviral immunotherapy. RESULTS: PAMK had the characteristics of compact, polyporous and agglomerated morphology, but does not have triple helix conformation. PCV2 infection led to the increase in LC3-II, degradation of p62 and the increase of viral Cap protein expression and viral copy number. PAMK treatment significantly alleviated PCV2-induced autophagy and inhibited PCV2 replication. Moreover, PAMK treatment significantly attenuated the increase of PINK1 protein expression and the decrease of TOMM20 protein expression caused by PCV2 infection, alleviated Parkin recruitment from cytoplasm to mitochondria and intracellular reactive oxygen species accumulation, restored mitochondrial membrane charge, alleviated viral Cap protein expression. CONCLUSION: PAMK alleviates PCV2-induced mitophagy to suppress PCV2 replication by inhibiting the Pink 1/Parkin pathway. These findings may provide new insights into the prevention and treatment of PCV2. © 2023 Society of Chemical Industry.


Assuntos
Atractylodes , Circovirus , Animais , Suínos , Atractylodes/química , Circovirus/genética , Circovirus/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Polissacarídeos/química , Replicação Viral
14.
Food Res Int ; 175: 113681, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129026

RESUMO

The accurate and rapid authentication techniques and strategies for highly-similar foods are still lacking. Herein, a novel sequential online extraction electrospray ionization mass spectrometry (S-oEESI-MS) was developed to achieve spatio-temporally resolved ionization and comprehensive characterization of complex foods with multi-components (high, medium, and low polarity substances). Meanwhile, a characteristic marker screening method and an integrated research strategy based on MS fingerprinting, characteristic marker and chemometrics modeling were established, which are especially suitable for the accurate and rapid authentication of highly-similar foods that are difficult to be authenticated by traditional techniques (e.g., LC-MS). Thirty-two batches of highly-similar Atractylodis macrocephalae rhizome from four different origins were used as model samples. As a result, S-oEESI-MS enabled a more comprehensive MS characterization of substance profiles in complex plant samples in 1.0 min. Further, 22 characteristic markers of Atractylodis macrocephalae were ingeniously screened out and combined with multivariate statistical analysis model, the accurate authentication of highly-similar Atractylodis macrocephalae was realized. This study presents a comprehensive strategy for accurate authentication and origin analysis of highly-similar foods, which has potentially significant applications for ensuring food quality and safety.


Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Espectrometria de Massas por Ionização por Electrospray , Atractylodes/química , Medicamentos de Ervas Chinesas/química , Análise Multivariada , 60705
15.
Microb Pathog ; 187: 106517, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159617

RESUMO

Atractylodes chinensis is one of the most commonly used bulk herbs in East Asia; however, root rot can seriously affect its quality and yields. In contrast to chemical pesticides, biological control strategies are environmentally compatible and safe. For this study, 68 antagonistic bacterial strains were isolated from the rhizospheres of healthy Atractylodes chinensis. Strain SY42 exhibited the most potent fungicidal activities, with inhibition rates against F. oxysporum, F. solani, and F. redolens of 67.07 %, 63.40 % and 68.45 %, respectively. Through morphological observation and molecular characterization, strain SY42 was identified as Paenibacillus polymyxa. The volatile organic components (VOCs) produced by SY42 effectively inhibited the mycelial growth of pathogenic fungi through diffusion. SY42 significantly inhibited the germination of pathogenic fungal spores. Following co-culturing with SY42, the mycelium of the pathogenic fungus was deformed, folded, and even ruptured. SY42 could produce cellulases and proteases to degrade fungal cell walls. Pot experiments demonstrated the excellent biocontrol efficacy of SY42. This study revealed that P. polymyxa SY42 inhibited pathogenic fungi through multiple mechanisms, which verified its utility as a biocontrol agent for the control of A. chinensis root rot.


Assuntos
Atractylodes , Fusarium , Paenibacillus polymyxa , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Micélio
16.
J Ethnopharmacol ; 319(Pt 3): 117326, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37879504

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Atractylodis Rhizoma is extensively employed in Traditional Chinese Medicine for the treatment of skin and gastrointestinal ailments. Its active components have been proven to demonstrate numerous beneficial properties, including antibacterial, antiviral, anti-inflammatory, anti-tumor, and anti-ulcer activities. Furthermore, the volatile oil from Atractylodis Rhizoma (VOAR) has been reported to effectively inhibit and eradicate pathogens such as Staphylococcus aureus, Escherichia coli and Candida albicans. Of particular concern is Staphylococcus pseudintermedius, the predominant pathogen responsible for canine pyoderma, whose increasing antimicrobial resistance poses a serious public health threat. VOAR merits further investigation regarding its antibacterial potential against Staphylococcus pseudintermedius. AIM OF THE STUDY: The study aims to verify the in vitro antibacterial activity of VOAR against Staphylococcus pseudintermedius. And a superficial skin infection model in mice was established to assess the in vivo therapeutic effect of VOAR. MATERIALS AND METHODS: Thirty strains of S. pseudintermedius were isolated from dogs with pyoderma, and the drug resistance was analyzed by disc diffusion method. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of VOAR were determined through the broth dilution method. The growth curve of bacteria in a culture medium containing VOAR was monitored using a UV spectrophotometer. Scanning electron microscopy was employed to observe the effects of VOAR on the microstructure of S. pseudintermedius. The impact of VOAR on the antibiotic resistance of S. pseudintermedius was assessed using the disc diffusion method. Twenty mice were randomly divided into four groups: the control group, the physiological saline group, the VOAR group, and the amikacin group. With the exception of the control group, the skin barrier of mice was disrupted by tap stripping, and the mice were subsequently inoculated with S. pseudintermedius to establish a superficial skin infection model. The modeled mice were treated with normal saline, VOAR, and amikacin for 5 days. Following the treatment period, the therapeutic effect of each group was evaluated based on the measures of body weight, skin symptoms, tissue bacterial load, tissue IL-6 content, and histopathological changes. RESULTS: The MIC and MBC of VOAR against 30 clinical isolates of S. pseudintermedius were found to be 0.005425% and 0.016875%, respectively. VOAR could exhibit the ability to delay the entry of bacteria into the logarithmic growth phase, disrupt the bacterial structure, and enhance the antibacterial zone in conjunction with antibiotic drugs. In the superficial skin infection model mice, VOAR significantly reduced the scores for skin redness (P < 0.0001), scab formation (P < 0.0001), and wrinkles (P < 0.0001). Moreover, VOAR markedly reduced the bacterial load (P < 0.001) and IL-6 content (P < 0.0001) in the skin tissues of mice. Histopathological observations revealed that the full-layer skin structure in the VOAR group was more complete, with clearer skin layers, and showed significant improvement in inflammatory cell infiltration and fibroblast proliferation compared to other groups. CONCLUSION: The results demonstrate that VOAR effectively inhibits and eradicates Staphylococcus pseudintermedius in vitro while also enhancing the pathogen's sensitivity to antibiotics. Moreover, VOAR exhibits a pronounced therapeutic effect in the superficial skin infection model mice.


Assuntos
Atractylodes , Staphylococcus aureus Resistente à Meticilina , Pioderma , Cães , Animais , Camundongos , Amicacina , Interleucina-6 , Pioderma/tratamento farmacológico , Pioderma/veterinária , Antibacterianos/farmacologia
17.
World J Gastroenterol ; 29(43): 5848-5864, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38074916

RESUMO

BACKGROUND: Atractylodes japonica Koidz. ex Kitam. (A. japonica, Chinese name: Guan-Cangzhu, Japanese name: Byaku-jutsu), a perennial herb, which is mainly distributed in northeast area of China, it's often used to treat digestive system diseases such as gastric ulcer (GU). However, the mechanism of its potential protective effects against GU remains unclear. AIM: To investigate the protective effects of A. japonica on acetic acid-induced GU rats. METHODS: The chemical constituents of A. japonica were determined by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analysis. The rat model of GU was simulated by acetic acid method. The pathological changes of gastric tissues were evaluated by hematoxylin-eosin stain, the levels of epidermal growth factor (EGF), EGF receptor (EGFR), nuclear factor kappa-B (NF-κB), interleukin-1ß (IL-1ß), IL-10, Na+-K+-ATPase (NKA) in serum and gastric tissues were determined by enzyme-linked immunosorbent assay, and the mRNA expressions of EGFR, NF-κBp65, IkappaBalpha (IκBα) and Zonula Occludens-1 (ZO-1) in gastric tissues were determined by real-time reverse transcription polymerase chain reaction, and the efficacy was observed. Then, plasma metabolomic analysis was performed by UPLC-MS/MS to screen the specific potential biomarkers, metabolic pathways and to explore the possible mechanisms. RESULTS: 48 chemical constituents were identified. Many of them have strong pharmacological activity, the results also revealed that A. japonica significantly improved the pathological damage of gastric tissues, increased the expression levels of IL-10, IκBα related to anti-inflammatory factors, decreased the expression levels of IL-1ß, NF-κB, NF-κBp65, related to proinflammatory factors, restored the levels of factors about EGF, EGFR, ZO-1 associated with ulcer healing and the levels of factors about NKA associated with energy metabolism. Metabolomic analysis identified 10 potential differential metabolites and enriched 7 related metabolic pathways. CONCLUSION: These findings contribute to the understanding of the potential mechanism of A. japonica to improve acetic acid-induced GU, and will be of great importance for the development and clinical application of natural drugs related to A. japonica.


Assuntos
Atractylodes , Úlcera Gástrica , Ratos , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/prevenção & controle , Ácido Acético/toxicidade , Atractylodes/química , Atractylodes/metabolismo , NF-kappa B/metabolismo , Interleucina-10 , Inibidor de NF-kappaB alfa , Fator de Crescimento Epidérmico , Cromatografia Líquida , Espectrometria de Massas em Tandem , Receptores ErbB
18.
Molecules ; 28(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959758

RESUMO

The aim of this study was to conduct a screening of potential therapeutic compounds found in the Atractylodes macrocephala rhizoma essential oil (AO) and explore its mechanism of action in the treatment of ulcerative colitis (UC). An inflammation cell model was employed in conjunction with phospho-antibody array technology to explore potential therapeutic compounds of AO and their anti-inflammatory and antioxidant effects. Furthermore, we assessed their efficacy and mechanisms of action in treating dextran sulfate sodium (DSS)-induced colitis in mice. Via the screening process, we identified atractylone (ATR) as the primary active compound in AO. It has been demonstrated that ATR can both decrease the levels of tumor necrosis factor (TNF)-α and reactive oxygen species (ROS) and increase the expression of adhesion proteins such as claudin, ZO-1, and occludin in vitro. Moreover, ATR has been shown to improve UC symptoms in vivo. Via a non-targeted metabolomics analysis of colon tissue, we identified 57 distinct metabolites that responded to ATR treatment. Subsequent analysis of the metabolic pathways revealed that the action of ATR was primarily focused on the amino acid metabolism pathway. In summary, ATR may alleviate the symptoms of UC by regulating multiple signaling pathways. Additionally, ATR has a comprehensive function in anti-inflammation, antioxidative stress, and intestinal injury reduction.


Assuntos
Atractylodes , Colite Ulcerativa , Colite , Óleos Voláteis , Animais , Camundongos , Atractylodes/química , Óleos Voláteis/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
19.
Int J Biol Macromol ; 253(Pt 3): 126860, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37716665

RESUMO

Atractylodes chinensis (DC.) Koidz. polysaccharide (AKP) has been shown to have hypoglycemic activity. In this study, the effects of AKP on fecal microbiota and metabolites in healthy subjects and patients with type 2 diabetes mellitus (T2DM) were investigated using an in vitro simulated digestive fermentation model. AKP were isolated and purified from Atractylodes chinensis (DC.) Koidz. Its main component AKP1 (AKP-0 M, about 78 % of AKP) has an average molecular weight of 3.25 kDa with monosaccharide composition of rhamnose, arabinose, and galactosamine in a molar ratio of 1: 1.25: 2.88. Notably, AKP fermentation might improve the intestinal microbiota of T2DM patients by the enrichment of some specific bacteria rather than the increase of microbial diversity. The addition of AKP specifically enriched Bifidobacteriaceae and weakened the proportion of Escherichia-Shigella. Moreover, AKP also increased the levels of short-chain fatty acids without affecting total gut gas production, suggesting that AKP could have beneficial effects while avoiding flatulence. Metabolomic analysis revealed that ARP fermentation caused changes in some metabolites, which were mainly related to energy metabolism and amino acid metabolism. Importantly, ARP fermentation significantly increased the level of myo-inositol, an insulin sensitizer. In addition, a significant correlation was observed between specific microbiota and differential metabolites. This study has laid a theoretical foundation for AKP application in functional foods.


Assuntos
Atractylodes , Diabetes Mellitus Tipo 2 , Microbiota , Humanos , Atractylodes/química , Fermentação , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polissacarídeos/química
20.
Int J Biol Macromol ; 253(Pt 4): 127044, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742891

RESUMO

Atractylodes lancea (Thunb.) is a perennial medicinal herb, with its dry rhizomes are rich in various sesquiterpenoids and polyacetylenes components (including atractylodin, atractylon and ß-eudesmol). However, the contents of these compounds are various and germplasms specific, and the mechanisms of biosynthesis in A. lancea are still unknown. In this study, we identified the differentially expressed candidate genes and metabolites involved in the biosynthesis of sesquiterpenoids and polyacetylenes, and speculated the anabolic pathways of these pharmaceutical components by transcriptome and metabolomic analysis. In the sesquiterpenoids biosynthesis, a total of 28 differentially expressed genes (DEGs) and 6 differentially expressed metabolites (DEMs) were identified. The beta-Selinene is likely to play a role in the synthesis of atractylon and ß-eudesmol. Additionally, the polyacetylenes biosynthesis showed the presence of 3 DEGs and 4 DEMs. Notably, some fatty acid desaturase (FAB2 and FAD2) significantly down-regulated in polyacetylenes biosynthesis. The gamma-Linolenic acid is likely involved in the biosynthesis of polyacetylenes and thus further synthesis of atractylodin. Overall, these studies have investigated the biosynthetic pathways of atractylodin, atractylon and ß-eudesmol in A. lancea for the first time, and present potential new anchor points for further exploration of sesquiterpenoids and polyacetylenes compound biosynthesis pathways in A. lancea.


Assuntos
Atractylodes , Sesquiterpenos , Atractylodes/genética , Atractylodes/metabolismo , Polímero Poliacetilênico/metabolismo , Transcriptoma , Sesquiterpenos/metabolismo , Metaboloma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...